圣源电子制作
标题:
CC1101模块_资料 无线收发模块-无线232-无线PC遥控-无线温度传感器-无线计数器-C程序
[打印本页]
作者:
sydz
时间:
2011-10-25 23:43
标题:
CC1101模块_资料 无线收发模块-无线232-无线PC遥控-无线温度传感器-无线计数器-C程序
程序包含 无线收发模块-无线232-无线PC遥控-无线温度传感器-无线计数器-无线比赛计分牌功能设计 C程序源
应用范围
􀁺 运行于 470/950 MHz ISM/SRD 频带的超低功耗无线应用
􀁺 无线传感网络
􀁺 家庭和楼宇自动化
􀁺 高级抄表架构 (AMI)
􀁺 无线计量
􀁺 无线告警和安全系统
产品描述
CC1100E 是一款 Sub-GHz 高性能射频收发器,设计旨在用于极低功耗 RF
应用。其主要针对工业、科研和医疗 (ISM) 以及 470-510 MHz 和 950-960
MHz 频带的短距离无线通信设备 (SRD)。CC1100E 特别适合于那些针对日本
ARIB STD-T96 标准和中国 470-510 MHz 短距离通信设备的无线应用。
CC1100E 在代码、封装和外引脚方面均与 CC1101[1] 和 CC1100 [2] RF 收发
器兼容。CC1100E、CC1101 以及 CC1100 均支持互补频带,可用于全球最为
常用的开放式低于 1 GHz 频率的 RF 设计:
􀁺 CC1100E:470-510 MHz 和 950-960 MHz
􀁺 CC1101:300-348 MHz,387-464 MHz 和 779-928 MHz
􀁺 CC1100:300-348 MHz,400-464 MHz 和 800-928 MHz
CC1100E RF 收发器与一个高度可配置的基带调制解调器集成在一起。该调制
解调器支持各种调制格式,并且拥有高达 500 kBaud 的可配置数据速率。
CC1100E 可提供对数据包处理、数据缓冲、突发传输、空闲信道评估、链路质
量指示以及无线唤醒的广泛硬件支持。
我们可通过一个 SPI 接口对 CC1100E 的主要运行参数和 64 字节发送/接收
FIFO 进行控制。一个典型的系统中,CC1100E 通常会与一颗微控制器以及少
数附加无源组件一起使用。
在没有事先得到德州仪器 (TI) 书面许可的情况下,不得将该产品用于下列任何产品或系统中:
(1)植入式心律管理系统,包括无限制起搏器、除颤器和心脏再同步设备,
(2)直接与一个或多个植入式医疗设备通信的外部心律管理系统;或
(3)用于监控或治疗心脏功能的其它设备,包括无限制压力传感器、生物化学传感器和神经刺激器。
CC1100E
关键特性
RF 性能
􀁺 高灵敏度(1.2 kBaud、480 MHz、1% 误包率条件下为 –112 dBm)
􀁺 低电流消耗(1.2 kBaud、480 MHz 下 RX 中为 15.5 mA)
􀁺 所有支持频率下高达 +10dBm 的可编程输出功率
􀁺 卓越的接收机选择性和阻断性能
􀁺 1.2 到 500kBaud 的可编程数据速率
􀁺 频带:470-510 MHz 和 950- 960 MHz
模拟特性
􀁺 支持 2-FSK、GFSK、MSK 以及 OOK,灵活的 ASK 波形整形
􀁺 快速的锁定频率合成器以及 90 μs 的建立时间使其适合于许多跳频系统。
􀁺 使用自动频率补偿 (AFC) 将频率合成器调整到实际接收信号中心频率
􀁺 集成的模拟温度传感器
数字特性
􀁺 提供对数据包导向系统的灵活支持;同步字检测、地址校验、灵活的数据包
长度以及自动 CRC 处理的片上支持
􀁺 高效的 SPI 接口;利用一次“突发”数据传输便可对所有寄存器进行编程
􀁺 数字 RSSI 输出
􀁺 可编程信道滤波器带宽
􀁺 可编程载波监听 (CS) 指示器
􀁺 可编程前导质量指示器 (PQI),用于随机噪声伪同步字检测增强保护
􀁺 支持发送前自动空闲信道评估 (CCA)(用于载波监听系统)
􀁺 支持每个数据包的链路质量指示 (LQI)
􀁺 可选数据自动白化和去白 (de-whitening)
低功耗特性
􀁺 400 nA 睡眠模式电流消耗
􀁺 快速启动时间;从睡眠模式转为 RX 或者 TX 模式只需 240 μs(由 EM 参
考设计 [3] 和 [4] 测量得出)
􀁺 自动低功耗 RX 轮询无线唤醒功能
􀁺 单独的 64 字节 RX 和 TX 数据 FIFO(实现了突发模式数据传输)
一般特性
􀁺 少量的外部组件;完全片上频率合成器,无需外部滤波器或 RF 开关
􀁺 绿色封装:符合 RoHS 标准,不含锑或溴
􀁺 小尺寸封装(QFN 4x4 mm 封装,20 引脚)
􀁺 适合于那些针对日本 ARIB STD-T96 标准的系统
􀁺 适合于那些针对中国 470-510 MHz 短距离通信设备规定的系统
􀁺 支持异步和同步串行接收/发送模式,以向后兼容现有无线通信协议。
(, 下载次数: 51)
上传
点击文件名下载附件
1100无线温度传感器\无线温度发送
#include <reg52.h>
#include <intrins.h>
#define INT8U unsigned char
#define INT16U unsigned int
#define WRITE_BURST 0x40 //连续写入
#define READ_SINGLE 0x80 //读
#define READ_BURST 0xC0 //连续读
#define BYTES_IN_RXFIFO 0x7F //接收缓冲区的有效字节数
#define CRC_OK 0x80 //CRC校验通过位标志
//*****************************************************************************************
sbit GDO0 =P1^3;
sbit GDO2 =P3^2;
sbit MISO =P1^6;
sbit MOSI =P1^5;
sbit SCK =P1^7;
sbit CSN =P1^2;
//*****************************************************************************************
sbit LED2 =P3^4;
sbit LED1 =P3^5;
sbit KEY1 =P3^6;
sbit KEY2 =P3^7;
//*****************************************************************************************
sbit led3=P2^3;
sbit led2=P2^2;
sbit led1=P2^1;
sbit led0=P2^0;
//*****************************************************************************************
sbit st=P2^6;
//*****************************************************************************************
sbit DQ=P2^5 ;
//*****************************************************************************************
INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60};
INT8U seg[10]={0xC0,0xCF,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; //0~~9段码
INT8U seg1[10]={0x40,0x4F,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10};
INT8U data temp_data[2]={0x00,0x00};
INT8U dispaly[8];
//*****************************************************************************************
void SpiInit(void);
void CpuInit(void);
void RESET_CC1100(void);
void POWER_UP_RESET_CC1100(void);
void halSpiWriteReg(INT8U addr, INT8U value);
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);
void halSpiStrobe(INT8U strobe);
INT8U halSpiReadReg(INT8U addr);
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);
INT8U halSpiReadStatus(INT8U addr);
void halRfWriteRfSettings(void);
void halRfSendPacket(INT8U *txBuffer, INT8U size);
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length);
//*****************************************************************************************
void delay1(INT16U i);
void ds_reset(void);
void write_byte(INT8U value);
INT8U read_byte(void);
void read_temp();
void work_temp();
//*****************************************************************************************
// CC1100 STROBE, CONTROL AND STATUS REGSITER
#define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration
#define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration
#define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration
#define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds
#define CCxxx0_SYNC1 0x04 // Sync word, high INT8U
#define CCxxx0_SYNC0 0x05 // Sync word, low INT8U
#define CCxxx0_PKTLEN 0x06 // Packet length
#define CCxxx0_PKTCTRL1 0x07 // Packet automation control
#define CCxxx0_PKTCTRL0 0x08 // Packet automation control
#define CCxxx0_ADDR 0x09 // Device address
#define CCxxx0_CHANNR 0x0A // Channel number
#define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control
#define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control
#define CCxxx0_FREQ2 0x0D // Frequency control word, high INT8U
#define CCxxx0_FREQ1 0x0E // Frequency control word, middle INT8U
#define CCxxx0_FREQ0 0x0F // Frequency control word, low INT8U
#define CCxxx0_MDMCFG4 0x10 // Modem configuration
#define CCxxx0_MDMCFG3 0x11 // Modem configuration
#define CCxxx0_MDMCFG2 0x12 // Modem configuration
#define CCxxx0_MDMCFG1 0x13 // Modem configuration
#define CCxxx0_MDMCFG0 0x14 // Modem configuration
#define CCxxx0_DEVIATN 0x15 // Modem deviation setting
#define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration
#define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration
#define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration
#define CCxxx0_AGCCTRL2 0x1B // AGC control
#define CCxxx0_AGCCTRL1 0x1C // AGC control
#define CCxxx0_AGCCTRL0 0x1D // AGC control
#define CCxxx0_WOREVT1 0x1E // High INT8U Event 0 timeout
#define CCxxx0_WOREVT0 0x1F // Low INT8U Event 0 timeout
#define CCxxx0_WORCTRL 0x20 // Wake On Radio control
#define CCxxx0_FREND1 0x21 // Front end RX configuration
#define CCxxx0_FREND0 0x22 // Front end TX configuration
#define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration
#define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration
#define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration
#define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration
#define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration
#define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration
#define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control
#define CCxxx0_PTEST 0x2A // Production test
#define CCxxx0_AGCTEST 0x2B // AGC test
#define CCxxx0_TEST2 0x2C // Various test settings
#define CCxxx0_TEST1 0x2D // Various test settings
#define CCxxx0_TEST0 0x2E // Various test settings
// Strobe commands
#define CCxxx0_SRES 0x30 // Reset chip.
#define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
// If in RX/TX: Go to a wait state where only the synthesizer is
// running (for quick RX / TX turnaround).
#define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator.
#define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off
// (enables quick start).
#define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and
// MCSM0.FS_AUTOCAL=1.
#define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if
// MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:
// Only go to TX if channel is clear.
#define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit
// Wake-On-Radio mode if applicable.
#define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer
#define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio)
#define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high.
#define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer.
#define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer.
#define CCxxx0_SWORRST 0x3C // Reset real time clock.
#define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two
// INT8Us for simpler software.
#define CCxxx0_PARTNUM 0x30
#define CCxxx0_VERSION 0x31
#define CCxxx0_FREQEST 0x32
#define CCxxx0_LQI 0x33
#define CCxxx0_RSSI 0x34
#define CCxxx0_MARCSTATE 0x35
#define CCxxx0_WORTIME1 0x36
#define CCxxx0_WORTIME0 0x37
#define CCxxx0_PKTSTATUS 0x38
#define CCxxx0_VCO_VC_DAC 0x39
#define CCxxx0_TXBYTES 0x3A
#define CCxxx0_RXBYTES 0x3B
#define CCxxx0_PATABLE 0x3E
#define CCxxx0_TXFIFO 0x3F
#define CCxxx0_RXFIFO 0x3F
// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers
typedef struct S_RF_SETTINGS
{
INT8U FSCTRL2; //自已加的
INT8U FSCTRL1; // Frequency synthesizer control.
INT8U FSCTRL0; // Frequency synthesizer control.
INT8U FREQ2; // Frequency control word, high INT8U.
INT8U FREQ1; // Frequency control word, middle INT8U.
INT8U FREQ0; // Frequency control word, low INT8U.
INT8U MDMCFG4; // Modem configuration.
INT8U MDMCFG3; // Modem configuration.
INT8U MDMCFG2; // Modem configuration.
INT8U MDMCFG1; // Modem configuration.
INT8U MDMCFG0; // Modem configuration.
INT8U CHANNR; // Channel number.
INT8U DEVIATN; // Modem deviation setting (when FSK modulation is enabled).
INT8U FREND1; // Front end RX configuration.
INT8U FREND0; // Front end RX configuration.
INT8U MCSM0; // Main Radio Control State Machine configuration.
INT8U FOCCFG; // Frequency Offset Compensation Configuration.
INT8U BSCFG; // Bit synchronization Configuration.
INT8U AGCCTRL2; // AGC control.
INT8U AGCCTRL1; // AGC control.
INT8U AGCCTRL0; // AGC control.
INT8U FSCAL3; // Frequency synthesizer calibration.
INT8U FSCAL2; // Frequency synthesizer calibration.
INT8U FSCAL1; // Frequency synthesizer calibration.
INT8U FSCAL0; // Frequency synthesizer calibration.
INT8U FSTEST; // Frequency synthesizer calibration control
INT8U TEST2; // Various test settings.
INT8U TEST1; // Various test settings.
INT8U TEST0; // Various test settings.
INT8U IOCFG2; // GDO2 output pin configuration
INT8U IOCFG0; // GDO0 output pin configuration
INT8U PKTCTRL1; // Packet automation control.
INT8U PKTCTRL0; // Packet automation control.
INT8U ADDR; // Device address.
INT8U PKTLEN; // Packet length.
} RF_SETTINGS;
/////////////////////////////////////////////////////////////////
const RF_SETTINGS rfSettings =
{
0x00,
0x08, // FSCTRL1 Frequency synthesizer control.
0x00, // FSCTRL0 Frequency synthesizer control.
0x10, // FREQ2 Frequency control word, high byte.
0xA7, // FREQ1 Frequency control word, middle byte.
0x62, // FREQ0 Frequency control word, low byte.
0x5B, // MDMCFG4 Modem configuration.
0xF8, // MDMCFG3 Modem configuration.
0x03, // MDMCFG2 Modem configuration.
0x22, // MDMCFG1 Modem configuration.
0xF8, // MDMCFG0 Modem configuration.
0x00, // CHANNR Channel number.
0x47, // DEVIATN Modem deviation setting (when FSK modulation is enabled).
0xB6, // FREND1 Front end RX configuration.
0x10, // FREND0 Front end RX configuration.
0x18, // MCSM0 Main Radio Control State Machine configuration.
0x1D, // FOCCFG Frequency Offset Compensation Configuration.
0x1C, // BSCFG Bit synchronization Configuration.
0xC7, // AGCCTRL2 AGC control.
0x00, // AGCCTRL1 AGC control.
0xB2, // AGCCTRL0 AGC control.
0xEA, // FSCAL3 Frequency synthesizer calibration.
0x2A, // FSCAL2 Frequency synthesizer calibration.
0x00, // FSCAL1 Frequency synthesizer calibration.
0x11, // FSCAL0 Frequency synthesizer calibration.
0x59, // FSTEST Frequency synthesizer calibration.
0x81, // TEST2 Various test settings.
0x35, // TEST1 Various test settings.
0x09, // TEST0 Various test settings.
0x0B, // IOCFG2 GDO2 output pin configuration.
0x06, // IOCFG0D GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.
0x04, // PKTCTRL1 Packet automation control.
0x05, // PKTCTRL0 Packet automation control.
0x00, // ADDR Device address.
0x0c // PKTLEN Packet length.
};
//*****************************************************************************************
//函数名:delay(unsigned int s)
//输入:时间
//输出:无
//功能描述:普通廷时,内部用
//*****************************************************************************************
static void delay(unsigned int s)
{
unsigned int i;
for(i=0; i<s; i++);
for(i=0; i<s; i++);
}
void halWait(INT16U timeout) {
do {
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
} while (--timeout);
}
void SpiInit(void)
{
CSN=0;
SCK=0;
CSN=1;
}
/*****************************************************************************************
//函数名:CpuInit()
//输入:无
//输出:无
//功能描述:SPI初始化程序
/*****************************************************************************************/
void CpuInit(void)
{
SpiInit();
delay(5000);
}
//*****************************************************************************************
//函数名:SpisendByte(INT8U dat)
//输入:发送的数据
//输出:无
//功能描述:SPI发送一个字节
//*****************************************************************************************
INT8U SpiTxRxByte(INT8U dat)
{
INT8U i,temp;
temp = 0;
SCK = 0;
for(i=0; i<8; i++)
{
if(dat & 0x80)
{
MOSI = 1;
}
else MOSI = 0;
dat <<= 1;
SCK = 1;
_nop_();
_nop_();
temp <<= 1;
if(MISO)temp++;
SCK = 0;
_nop_();
_nop_();
}
return temp;
}
//*****************************************************************************************
//函数名:void RESET_CC1100(void)
//输入:无
//输出:无
//功能描述:复位CC1100
//*****************************************************************************************
void RESET_CC1100(void)
{
CSN = 0;
while (MISO);
SpiTxRxByte(CCxxx0_SRES); //写入复位命令
while (MISO);
CSN = 1;
}
//*****************************************************************************************
//函数名:void POWER_UP_RESET_CC1100(void)
//输入:无
//输出:无
//功能描述:上电复位CC1100
//*****************************************************************************************
void POWER_UP_RESET_CC1100(void)
{
CSN = 1;
halWait(1);
CSN = 0;
halWait(1);
CSN = 1;
halWait(41);
RESET_CC1100(); //复位CC1100
}
//*****************************************************************************************
//函数名:void halSpiWriteReg(INT8U addr, INT8U value)
//输入:地址和配置字
//输出:无
//功能描述:SPI写寄存器
//*****************************************************************************************
void halSpiWriteReg(INT8U addr, INT8U value)
{
CSN = 0;
while (MISO);
SpiTxRxByte(addr); //写地址
SpiTxRxByte(value); //写入配置
CSN = 1;
}
//*****************************************************************************************
//函数名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//输入:地址,写入缓冲区,写入个数
//输出:无
//功能描述:SPI连续写配置寄存器
//*****************************************************************************************
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i, temp;
temp = addr | WRITE_BURST;
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
SpiTxRxByte(buffer[i]);
}
CSN = 1;
}
//*****************************************************************************************
//函数名:void halSpiStrobe(INT8U strobe)
//输入:命令
//输出:无
//功能描述:SPI写命令
//*****************************************************************************************
void halSpiStrobe(INT8U strobe)
{
CSN = 0;
while (MISO);
SpiTxRxByte(strobe); //写入命令
CSN = 1;
}
//*****************************************************************************************
//函数名:INT8U halSpiReadReg(INT8U addr)
//输入:地址
//输出:该寄存器的配置字
//功能描述:SPI读寄存器
//*****************************************************************************************
INT8U halSpiReadReg(INT8U addr)
{
INT8U temp, value;
temp = addr|READ_SINGLE;//读寄存器命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CSN = 1;
return value;
}
//*****************************************************************************************
//函数名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//输入:地址,读出数据后暂存的缓冲区,读出配置个数
//输出:无
//功能描述:SPI连续写配置寄存器
//*****************************************************************************************
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i,temp;
temp = addr | READ_BURST; //写入要读的配置寄存器地址和读命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
buffer[i] = SpiTxRxByte(0);
}
CSN = 1;
}
//*****************************************************************************************
//函数名:INT8U halSpiReadReg(INT8U addr)
//输入:地址
//输出:该状态寄存器当前值
//功能描述:SPI读状态寄存器
//*****************************************************************************************
INT8U halSpiReadStatus(INT8U addr)
{
INT8U value,temp;
temp = addr | READ_BURST; //写入要读的状态寄存器的地址同时写入读命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CSN = 1;
return value;
}
//*****************************************************************************************
//函数名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)
//输入:无
//输出:无
//功能描述:配置CC1100的寄存器
//*****************************************************************************************
void halRfWriteRfSettings(void)
{
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL2);//自已加的
// Write register settings
halSpiWriteReg(CCxxx0_FSCTRL1, rfSettings.FSCTRL1);
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL0);
halSpiWriteReg(CCxxx0_FREQ2, rfSettings.FREQ2);
halSpiWriteReg(CCxxx0_FREQ1, rfSettings.FREQ1);
halSpiWriteReg(CCxxx0_FREQ0, rfSettings.FREQ0);
halSpiWriteReg(CCxxx0_MDMCFG4, rfSettings.MDMCFG4);
halSpiWriteReg(CCxxx0_MDMCFG3, rfSettings.MDMCFG3);
halSpiWriteReg(CCxxx0_MDMCFG2, rfSettings.MDMCFG2);
halSpiWriteReg(CCxxx0_MDMCFG1, rfSettings.MDMCFG1);
halSpiWriteReg(CCxxx0_MDMCFG0, rfSettings.MDMCFG0);
halSpiWriteReg(CCxxx0_CHANNR, rfSettings.CHANNR);
halSpiWriteReg(CCxxx0_DEVIATN, rfSettings.DEVIATN);
halSpiWriteReg(CCxxx0_FREND1, rfSettings.FREND1);
halSpiWriteReg(CCxxx0_FREND0, rfSettings.FREND0);
halSpiWriteReg(CCxxx0_MCSM0 , rfSettings.MCSM0 );
halSpiWriteReg(CCxxx0_FOCCFG, rfSettings.FOCCFG);
halSpiWriteReg(CCxxx0_BSCFG, rfSettings.BSCFG);
halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);
halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);
halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);
halSpiWriteReg(CCxxx0_FSCAL3, rfSettings.FSCAL3);
halSpiWriteReg(CCxxx0_FSCAL2, rfSettings.FSCAL2);
halSpiWriteReg(CCxxx0_FSCAL1, rfSettings.FSCAL1);
halSpiWriteReg(CCxxx0_FSCAL0, rfSettings.FSCAL0);
halSpiWriteReg(CCxxx0_FSTEST, rfSettings.FSTEST);
halSpiWriteReg(CCxxx0_TEST2, rfSettings.TEST2);
halSpiWriteReg(CCxxx0_TEST1, rfSettings.TEST1);
halSpiWriteReg(CCxxx0_TEST0, rfSettings.TEST0);
halSpiWriteReg(CCxxx0_IOCFG2, rfSettings.IOCFG2);
halSpiWriteReg(CCxxx0_IOCFG0, rfSettings.IOCFG0);
halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);
halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);
halSpiWriteReg(CCxxx0_ADDR, rfSettings.ADDR);
halSpiWriteReg(CCxxx0_PKTLEN, rfSettings.PKTLEN);
}
//*****************************************************************************************
//函数名:void halRfSendPacket(INT8U *txBuffer, INT8U size)
//输入:发送的缓冲区,发送数据个数
//输出:无
//功能描述:CC1100发送一组数据
//*****************************************************************************************
void halRfSendPacket(INT8U *txBuffer, INT8U size)
{
halSpiWriteReg(CCxxx0_TXFIFO, size);
halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size); //写入要发送的数据
halSpiStrobe(CCxxx0_STX); //进入发送模式发送数据
// Wait for GDO0 to be set -> sync transmitted
while (!GDO0);
// Wait for GDO0 to be cleared -> end of packet
while (GDO0);
halSpiStrobe(CCxxx0_SFTX);
}
void setRxMode(void)
{
halSpiStrobe(CCxxx0_SRX); //进入接收状态
}
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)
{
INT8U status[2];
INT8U packetLength;
INT8U i=(*length)*4; // 具体多少要根据datarate和length来决定
halSpiStrobe(CCxxx0_SRX); //进入接收状态
delay(2);
while (GDO0)
{
delay(2);
--i;
if(i<1)
return 0;
}
if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0
{
packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度
if (packetLength <= *length) //如果所要的有效数据长度小于等于接收到的数据包的长度
{
halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //读出所有接收到的数据
*length = packetLength; //把接收数据长度的修改为当前数据的长度
// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //读出CRC校验位
halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
return (status[1] & CRC_OK); //如果校验成功返回接收成功
}
else
{
*length = packetLength;
halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
return 0;
}
}
else
return 0;
}
//*****************************************************************************************
void ds_reset(void)
{
char temp=1;
while(temp)
{
while(temp)
{
DQ=1;_nop_();_nop_();
DQ=0;
delay1(80);
DQ=1;
delay1(9);
temp=DQ;
}
delay1(64);
temp=~DQ;
}
DQ=1;
}
//*****************************************************************************************
void delay1( INT16U i)
{
for(;i>0;i--);
}
//*****************************************************************************************
void write_byte(INT8U value)
{
INT8U i;
for(i=8;i>0;i--)
{
DQ=1;_nop_();_nop_();
DQ=0;_nop_();_nop_();_nop_();_nop_();_nop_();
DQ=value&0x01;
delay1(9);
value>>=1;
}
DQ=1;
delay1(1);
}
//*****************************************************************************************
INT8U read_byte(void)
{
INT8U i;
INT8U value1=0;
for(i=8;i>0;i--)
{
DQ=1;_nop_();_nop_();
value1>>=1;
DQ=0;
_nop_();_nop_();_nop_();_nop_();
DQ=1;
_nop_();_nop_();_nop_();_nop_();
if(DQ)
value1|=0x80;
delay1(9);
}
DQ=1;
return(value1);
}
//*****************************************************************************************
void read_temp()
{
ds_reset();
write_byte(0xcc);
write_byte(0xbe);
temp_data[0]=read_byte();
temp_data[1]=read_byte();
ds_reset();
write_byte(0xcc);
write_byte(0x44);
}
//*****************************************************************************************
void work_temp()
{
INT8U n=0;
if(temp_data[1]>127)
{
temp_data[1]=(256-temp_data[1]); //负值
temp_data[0]=(256-temp_data[0]);
n=1;
}
dispaly[6]=((temp_data[0]&0xf0)>>4)|((temp_data[1]&0x0f)<<4);
dispaly[5]=dispaly[6]/100; //百位
dispaly[4]=dispaly[6]%100; //
dispaly[2]=dispaly[4]/10; //十位
dispaly[1]=dispaly[4]%10; //个位
switch (temp_data[0]&0x0f) //小数位
{
case 0x0f:dispaly[0]=9;break;
case 0x0e:dispaly[0]=9;break;
case 0x0d:dispaly[0]=8;break;
case 0x0c:dispaly[0]=8;break;
case 0x0b:dispaly[0]=7;break;
case 0x0a:dispaly[0]=6;break;
case 0x09:dispaly[0]=6;break;
case 0x08:dispaly[0]=5;break;
case 0x07:dispaly[0]=4;break;
case 0x06:dispaly[0]=4;break;
case 0x05:dispaly[0]=3;break;
case 0x04:dispaly[0]=3;break;
case 0x03:dispaly[0]=2;break;
case 0x02:dispaly[0]=1;break;
case 0x01:dispaly[0]=1;break;
case 0x00:dispaly[0]=1;break;
default:break;
}
if(n) //负值时显示aa,正直显示dd
{
dispaly[3]=0x11; //
}
else dispaly[3]=0x22;
}
//*****************************************************************************************
void disdignit()
{
char i;
// if(temp[0])
{
for(i=0;i<3;i++)
{
P0=0xC6;
led0=0;
delay1(40);
led0=1;
P0=seg[dispaly[0]];
led1=0;
delay1(40);
led1=1;
P0=seg1 [dispaly[1]];
led2=0;
delay1(40);
led2=1;
P0=seg[ dispaly[2]];
led3=0;
delay1(40);
led3=1;
}
}
}
void main(void)
{
INT8U leng =0;
INT8U tf =0;
INT8U TxBuf[8]={0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08}; // 8字节, 如果需要更长的数据包,请正确设置
INT8U RxBuf[8]={0};
CpuInit();
POWER_UP_RESET_CC1100();
halRfWriteRfSettings();
halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);
// halRfSendPacket(TxBuf,8); // Transmit Tx buffer data
delay(6000);
while(1)
{
read_temp();
work_temp();
delay1(500);
disdignit();
halRfSendPacket(dispaly,4);
// delay1(1000);
// leng=8;
// halRfSendPacket(TxBuf,leng); // Transmit Tx buffer data
}
}
复制代码
1100无线温度传感器\无线温度接收
#include <reg52.h>
#include <intrins.h>
#define INT8U unsigned char
#define INT16U unsigned int
#define WRITE_BURST 0x40 //连续写入
#define READ_SINGLE 0x80 //读
#define READ_BURST 0xC0 //连续读
#define BYTES_IN_RXFIFO 0x7F //接收缓冲区的有效字节数
#define CRC_OK 0x80 //CRC校验通过位标志
//*****************************************************************************************
sbit GDO0 =P1^3;
sbit GDO2 =P3^2;
sbit MISO =P1^6;
sbit MOSI =P1^5;
sbit SCK =P1^7;
sbit CSN =P1^2;
//*****************************************************************************************
sbit LED2 =P3^4;
sbit LED1 =P3^5;
sbit KEY1 =P3^6;
sbit KEY2 =P3^7;
//*****************************************************************************************
sbit led3=P2^3;
sbit led2=P2^2;
sbit led1=P2^1;
sbit led0=P2^0;
char temp[6];
INT8U seg[10]={0xC0,0xCF,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; //0~~9段码
INT8U seg1[10]={0x40,0x4F,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10};
INT8U data temp_data[2]={0x00,0x00};
INT8U dispaly[8];
//*****************************************************************************************
INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60};
//*****************************************************************************************
void SpiInit(void);
void CpuInit(void);
void RESET_CC1100(void);
void POWER_UP_RESET_CC1100(void);
void halSpiWriteReg(INT8U addr, INT8U value);
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count);
void halSpiStrobe(INT8U strobe);
INT8U halSpiReadReg(INT8U addr);
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count);
INT8U halSpiReadStatus(INT8U addr);
void halRfWriteRfSettings(void);
void halRfSendPacket(INT8U *txBuffer, INT8U size);
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length);
void StartUART( void );
void R_S_Byte(INT8U R_Byte);
//*****************************************************************************************
// CC1100 STROBE, CONTROL AND STATUS REGSITER
#define CCxxx0_IOCFG2 0x00 // GDO2 output pin configuration
#define CCxxx0_IOCFG1 0x01 // GDO1 output pin configuration
#define CCxxx0_IOCFG0 0x02 // GDO0 output pin configuration
#define CCxxx0_FIFOTHR 0x03 // RX FIFO and TX FIFO thresholds
#define CCxxx0_SYNC1 0x04 // Sync word, high INT8U
#define CCxxx0_SYNC0 0x05 // Sync word, low INT8U
#define CCxxx0_PKTLEN 0x06 // Packet length
#define CCxxx0_PKTCTRL1 0x07 // Packet automation control
#define CCxxx0_PKTCTRL0 0x08 // Packet automation control
#define CCxxx0_ADDR 0x09 // Device address
#define CCxxx0_CHANNR 0x0A // Channel number
#define CCxxx0_FSCTRL1 0x0B // Frequency synthesizer control
#define CCxxx0_FSCTRL0 0x0C // Frequency synthesizer control
#define CCxxx0_FREQ2 0x0D // Frequency control word, high INT8U
#define CCxxx0_FREQ1 0x0E // Frequency control word, middle INT8U
#define CCxxx0_FREQ0 0x0F // Frequency control word, low INT8U
#define CCxxx0_MDMCFG4 0x10 // Modem configuration
#define CCxxx0_MDMCFG3 0x11 // Modem configuration
#define CCxxx0_MDMCFG2 0x12 // Modem configuration
#define CCxxx0_MDMCFG1 0x13 // Modem configuration
#define CCxxx0_MDMCFG0 0x14 // Modem configuration
#define CCxxx0_DEVIATN 0x15 // Modem deviation setting
#define CCxxx0_MCSM2 0x16 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM1 0x17 // Main Radio Control State Machine configuration
#define CCxxx0_MCSM0 0x18 // Main Radio Control State Machine configuration
#define CCxxx0_FOCCFG 0x19 // Frequency Offset Compensation configuration
#define CCxxx0_BSCFG 0x1A // Bit Synchronization configuration
#define CCxxx0_AGCCTRL2 0x1B // AGC control
#define CCxxx0_AGCCTRL1 0x1C // AGC control
#define CCxxx0_AGCCTRL0 0x1D // AGC control
#define CCxxx0_WOREVT1 0x1E // High INT8U Event 0 timeout
#define CCxxx0_WOREVT0 0x1F // Low INT8U Event 0 timeout
#define CCxxx0_WORCTRL 0x20 // Wake On Radio control
#define CCxxx0_FREND1 0x21 // Front end RX configuration
#define CCxxx0_FREND0 0x22 // Front end TX configuration
#define CCxxx0_FSCAL3 0x23 // Frequency synthesizer calibration
#define CCxxx0_FSCAL2 0x24 // Frequency synthesizer calibration
#define CCxxx0_FSCAL1 0x25 // Frequency synthesizer calibration
#define CCxxx0_FSCAL0 0x26 // Frequency synthesizer calibration
#define CCxxx0_RCCTRL1 0x27 // RC oscillator configuration
#define CCxxx0_RCCTRL0 0x28 // RC oscillator configuration
#define CCxxx0_FSTEST 0x29 // Frequency synthesizer calibration control
#define CCxxx0_PTEST 0x2A // Production test
#define CCxxx0_AGCTEST 0x2B // AGC test
#define CCxxx0_TEST2 0x2C // Various test settings
#define CCxxx0_TEST1 0x2D // Various test settings
#define CCxxx0_TEST0 0x2E // Various test settings
// Strobe commands
#define CCxxx0_SRES 0x30 // Reset chip.
#define CCxxx0_SFSTXON 0x31 // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
// If in RX/TX: Go to a wait state where only the synthesizer is
// running (for quick RX / TX turnaround).
#define CCxxx0_SXOFF 0x32 // Turn off crystal oscillator.
#define CCxxx0_SCAL 0x33 // Calibrate frequency synthesizer and turn it off
// (enables quick start).
#define CCxxx0_SRX 0x34 // Enable RX. Perform calibration first if coming from IDLE and
// MCSM0.FS_AUTOCAL=1.
#define CCxxx0_STX 0x35 // In IDLE state: Enable TX. Perform calibration first if
// MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:
// Only go to TX if channel is clear.
#define CCxxx0_SIDLE 0x36 // Exit RX / TX, turn off frequency synthesizer and exit
// Wake-On-Radio mode if applicable.
#define CCxxx0_SAFC 0x37 // Perform AFC adjustment of the frequency synthesizer
#define CCxxx0_SWOR 0x38 // Start automatic RX polling sequence (Wake-on-Radio)
#define CCxxx0_SPWD 0x39 // Enter power down mode when CSn goes high.
#define CCxxx0_SFRX 0x3A // Flush the RX FIFO buffer.
#define CCxxx0_SFTX 0x3B // Flush the TX FIFO buffer.
#define CCxxx0_SWORRST 0x3C // Reset real time clock.
#define CCxxx0_SNOP 0x3D // No operation. May be used to pad strobe commands to two
// INT8Us for simpler software.
#define CCxxx0_PARTNUM 0x30
#define CCxxx0_VERSION 0x31
#define CCxxx0_FREQEST 0x32
#define CCxxx0_LQI 0x33
#define CCxxx0_RSSI 0x34
#define CCxxx0_MARCSTATE 0x35
#define CCxxx0_WORTIME1 0x36
#define CCxxx0_WORTIME0 0x37
#define CCxxx0_PKTSTATUS 0x38
#define CCxxx0_VCO_VC_DAC 0x39
#define CCxxx0_TXBYTES 0x3A
#define CCxxx0_RXBYTES 0x3B
#define CCxxx0_PATABLE 0x3E
#define CCxxx0_TXFIFO 0x3F
#define CCxxx0_RXFIFO 0x3F
// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers
typedef struct S_RF_SETTINGS
{
INT8U FSCTRL2; //自已加的
INT8U FSCTRL1; // Frequency synthesizer control.
INT8U FSCTRL0; // Frequency synthesizer control.
INT8U FREQ2; // Frequency control word, high INT8U.
INT8U FREQ1; // Frequency control word, middle INT8U.
INT8U FREQ0; // Frequency control word, low INT8U.
INT8U MDMCFG4; // Modem configuration.
INT8U MDMCFG3; // Modem configuration.
INT8U MDMCFG2; // Modem configuration.
INT8U MDMCFG1; // Modem configuration.
INT8U MDMCFG0; // Modem configuration.
INT8U CHANNR; // Channel number.
INT8U DEVIATN; // Modem deviation setting (when FSK modulation is enabled).
INT8U FREND1; // Front end RX configuration.
INT8U FREND0; // Front end RX configuration.
INT8U MCSM0; // Main Radio Control State Machine configuration.
INT8U FOCCFG; // Frequency Offset Compensation Configuration.
INT8U BSCFG; // Bit synchronization Configuration.
INT8U AGCCTRL2; // AGC control.
INT8U AGCCTRL1; // AGC control.
INT8U AGCCTRL0; // AGC control.
INT8U FSCAL3; // Frequency synthesizer calibration.
INT8U FSCAL2; // Frequency synthesizer calibration.
INT8U FSCAL1; // Frequency synthesizer calibration.
INT8U FSCAL0; // Frequency synthesizer calibration.
INT8U FSTEST; // Frequency synthesizer calibration control
INT8U TEST2; // Various test settings.
INT8U TEST1; // Various test settings.
INT8U TEST0; // Various test settings.
INT8U IOCFG2; // GDO2 output pin configuration
INT8U IOCFG0; // GDO0 output pin configuration
INT8U PKTCTRL1; // Packet automation control.
INT8U PKTCTRL0; // Packet automation control.
INT8U ADDR; // Device address.
INT8U PKTLEN; // Packet length.
} RF_SETTINGS;
/////////////////////////////////////////////////////////////////
const RF_SETTINGS rfSettings =
{
0x00,
0x08, // FSCTRL1 Frequency synthesizer control.
0x00, // FSCTRL0 Frequency synthesizer control.
0x10, // FREQ2 Frequency control word, high byte.
0xA7, // FREQ1 Frequency control word, middle byte.
0x62, // FREQ0 Frequency control word, low byte.
0x5B, // MDMCFG4 Modem configuration.
0xF8, // MDMCFG3 Modem configuration.
0x03, // MDMCFG2 Modem configuration.
0x22, // MDMCFG1 Modem configuration.
0xF8, // MDMCFG0 Modem configuration.
0x00, // CHANNR Channel number.
0x47, // DEVIATN Modem deviation setting (when FSK modulation is enabled).
0xB6, // FREND1 Front end RX configuration.
0x10, // FREND0 Front end RX configuration.
0x18, // MCSM0 Main Radio Control State Machine configuration.
0x1D, // FOCCFG Frequency Offset Compensation Configuration.
0x1C, // BSCFG Bit synchronization Configuration.
0xC7, // AGCCTRL2 AGC control.
0x00, // AGCCTRL1 AGC control.
0xB2, // AGCCTRL0 AGC control.
0xEA, // FSCAL3 Frequency synthesizer calibration.
0x2A, // FSCAL2 Frequency synthesizer calibration.
0x00, // FSCAL1 Frequency synthesizer calibration.
0x11, // FSCAL0 Frequency synthesizer calibration.
0x59, // FSTEST Frequency synthesizer calibration.
0x81, // TEST2 Various test settings.
0x35, // TEST1 Various test settings.
0x09, // TEST0 Various test settings.
0x0B, // IOCFG2 GDO2 output pin configuration.
0x06, // IOCFG0D GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.
0x04, // PKTCTRL1 Packet automation control.
0x05, // PKTCTRL0 Packet automation control.
0x00, // ADDR Device address.
0x0c // PKTLEN Packet length.
};
//*****************************************************************************************
//函数名:delay(unsigned int s)
//输入:时间
//输出:无
//功能描述:普通廷时,内部用
//*****************************************************************************************
static void delay(unsigned int s)
{
unsigned int i;
for(i=0; i<s; i++);
for(i=0; i<s; i++);
}
//*****************************************************************************************
void delay1( INT16U i)
{
for(;i>0;i--);
}
void halWait(INT16U timeout) {
do {
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
} while (--timeout);
}
void SpiInit(void)
{
CSN=0;
SCK=0;
CSN=1;
}
/*****************************************************************************************
//函数名:CpuInit()
//输入:无
//输出:无
//功能描述:SPI初始化程序
/*****************************************************************************************/
void CpuInit(void)
{
SpiInit();
delay(5000);
}
//*****************************************************************************************
//函数名:SpisendByte(INT8U dat)
//输入:发送的数据
//输出:无
//功能描述:SPI发送一个字节
//*****************************************************************************************
INT8U SpiTxRxByte(INT8U dat)
{
INT8U i,temp;
temp = 0;
SCK = 0;
for(i=0; i<8; i++)
{
if(dat & 0x80)
{
MOSI = 1;
}
else MOSI = 0;
dat <<= 1;
SCK = 1;
_nop_();
_nop_();
temp <<= 1;
if(MISO)temp++;
SCK = 0;
_nop_();
_nop_();
}
return temp;
}
//*****************************************************************************************
//函数名:void RESET_CC1100(void)
//输入:无
//输出:无
//功能描述:复位CC1100
//*****************************************************************************************
void RESET_CC1100(void)
{
CSN = 0;
while (MISO);
SpiTxRxByte(CCxxx0_SRES); //写入复位命令
while (MISO);
CSN = 1;
}
//*****************************************************************************************
//函数名:void POWER_UP_RESET_CC1100(void)
//输入:无
//输出:无
//功能描述:上电复位CC1100
//*****************************************************************************************
void POWER_UP_RESET_CC1100(void)
{
CSN = 1;
halWait(1);
CSN = 0;
halWait(1);
CSN = 1;
halWait(41);
RESET_CC1100(); //复位CC1100
}
//*****************************************************************************************
//函数名:void halSpiWriteReg(INT8U addr, INT8U value)
//输入:地址和配置字
//输出:无
//功能描述:SPI写寄存器
//*****************************************************************************************
void halSpiWriteReg(INT8U addr, INT8U value)
{
CSN = 0;
while (MISO);
SpiTxRxByte(addr); //写地址
SpiTxRxByte(value); //写入配置
CSN = 1;
}
//*****************************************************************************************
//函数名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//输入:地址,写入缓冲区,写入个数
//输出:无
//功能描述:SPI连续写配置寄存器
//*****************************************************************************************
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i, temp;
temp = addr | WRITE_BURST;
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
SpiTxRxByte(buffer[i]);
}
CSN = 1;
}
//*****************************************************************************************
//函数名:void halSpiStrobe(INT8U strobe)
//输入:命令
//输出:无
//功能描述:SPI写命令
//*****************************************************************************************
void halSpiStrobe(INT8U strobe)
{
CSN = 0;
while (MISO);
SpiTxRxByte(strobe); //写入命令
CSN = 1;
}
//*****************************************************************************************
//函数名:INT8U halSpiReadReg(INT8U addr)
//输入:地址
//输出:该寄存器的配置字
//功能描述:SPI读寄存器
//*****************************************************************************************
INT8U halSpiReadReg(INT8U addr)
{
INT8U temp, value;
temp = addr|READ_SINGLE;//读寄存器命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CSN = 1;
return value;
}
//*****************************************************************************************
//函数名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//输入:地址,读出数据后暂存的缓冲区,读出配置个数
//输出:无
//功能描述:SPI连续写配置寄存器
//*****************************************************************************************
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
{
INT8U i,temp;
temp = addr | READ_BURST; //写入要读的配置寄存器地址和读命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
for (i = 0; i < count; i++)
{
buffer[i] = SpiTxRxByte(0);
}
CSN = 1;
}
//*****************************************************************************************
//函数名:INT8U halSpiReadReg(INT8U addr)
//输入:地址
//输出:该状态寄存器当前值
//功能描述:SPI读状态寄存器
//*****************************************************************************************
INT8U halSpiReadStatus(INT8U addr)
{
INT8U value,temp;
temp = addr | READ_BURST; //写入要读的状态寄存器的地址同时写入读命令
CSN = 0;
while (MISO);
SpiTxRxByte(temp);
value = SpiTxRxByte(0);
CSN = 1;
return value;
}
//*****************************************************************************************
//函数名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)
//输入:无
//输出:无
//功能描述:配置CC1100的寄存器
//*****************************************************************************************
void halRfWriteRfSettings(void)
{
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL2);//自已加的
// Write register settings
halSpiWriteReg(CCxxx0_FSCTRL1, rfSettings.FSCTRL1);
halSpiWriteReg(CCxxx0_FSCTRL0, rfSettings.FSCTRL0);
halSpiWriteReg(CCxxx0_FREQ2, rfSettings.FREQ2);
halSpiWriteReg(CCxxx0_FREQ1, rfSettings.FREQ1);
halSpiWriteReg(CCxxx0_FREQ0, rfSettings.FREQ0);
halSpiWriteReg(CCxxx0_MDMCFG4, rfSettings.MDMCFG4);
halSpiWriteReg(CCxxx0_MDMCFG3, rfSettings.MDMCFG3);
halSpiWriteReg(CCxxx0_MDMCFG2, rfSettings.MDMCFG2);
halSpiWriteReg(CCxxx0_MDMCFG1, rfSettings.MDMCFG1);
halSpiWriteReg(CCxxx0_MDMCFG0, rfSettings.MDMCFG0);
halSpiWriteReg(CCxxx0_CHANNR, rfSettings.CHANNR);
halSpiWriteReg(CCxxx0_DEVIATN, rfSettings.DEVIATN);
halSpiWriteReg(CCxxx0_FREND1, rfSettings.FREND1);
halSpiWriteReg(CCxxx0_FREND0, rfSettings.FREND0);
halSpiWriteReg(CCxxx0_MCSM0 , rfSettings.MCSM0 );
halSpiWriteReg(CCxxx0_FOCCFG, rfSettings.FOCCFG);
halSpiWriteReg(CCxxx0_BSCFG, rfSettings.BSCFG);
halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);
halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);
halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);
halSpiWriteReg(CCxxx0_FSCAL3, rfSettings.FSCAL3);
halSpiWriteReg(CCxxx0_FSCAL2, rfSettings.FSCAL2);
halSpiWriteReg(CCxxx0_FSCAL1, rfSettings.FSCAL1);
halSpiWriteReg(CCxxx0_FSCAL0, rfSettings.FSCAL0);
halSpiWriteReg(CCxxx0_FSTEST, rfSettings.FSTEST);
halSpiWriteReg(CCxxx0_TEST2, rfSettings.TEST2);
halSpiWriteReg(CCxxx0_TEST1, rfSettings.TEST1);
halSpiWriteReg(CCxxx0_TEST0, rfSettings.TEST0);
halSpiWriteReg(CCxxx0_IOCFG2, rfSettings.IOCFG2);
halSpiWriteReg(CCxxx0_IOCFG0, rfSettings.IOCFG0);
halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);
halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);
halSpiWriteReg(CCxxx0_ADDR, rfSettings.ADDR);
halSpiWriteReg(CCxxx0_PKTLEN, rfSettings.PKTLEN);
}
//*****************************************************************************************
//函数名:void halRfSendPacket(INT8U *txBuffer, INT8U size)
//输入:发送的缓冲区,发送数据个数
//输出:无
//功能描述:CC1100发送一组数据
//*****************************************************************************************
void halRfSendPacket(INT8U *txBuffer, INT8U size)
{
halSpiWriteReg(CCxxx0_TXFIFO, size);
halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size); //写入要发送的数据
halSpiStrobe(CCxxx0_STX); //进入发送模式发送数据
// Wait for GDO0 to be set -> sync transmitted
while (!GDO0);
// Wait for GDO0 to be cleared -> end of packet
while (GDO0);
halSpiStrobe(CCxxx0_SFTX);
}
void setRxMode(void)
{
halSpiStrobe(CCxxx0_SRX); //进入接收状态
}
//---------------------------------------------------------------------------
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length)
{
INT8U status[2];
INT8U packetLength;
INT8U i=(*length)*4; // 具体多少要根据datarate和length来决定
halSpiStrobe(CCxxx0_SRX); //进入接收状态
//delay(5);
//while (!GDO1);
//while (GDO1);
delay(2);
while (GDO0)
{
delay(2);
--i;
if(i<1)
return 0;
}
if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0
{
packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度
if (packetLength <= *length) //如果所要的有效数据长度小于等于接收到的数据包的长度
{
halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //读出所有接收到的数据
*length = packetLength; //把接收数据长度的修改为当前数据的长度
// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //读出CRC校验位
halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
return (status[1] & CRC_OK); //如果校验成功返回接收成功
}
else
{
*length = packetLength;
halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
return 0;
}
}
else
return 0;
}
//*****************************************************************************************
void disdignit()
{
char i;
if(temp[0])
{
for(i=0;i<3;i++)
{
P0=0xC6;
led0=0;
delay1(40);
led0=1;
P0=seg[temp[1]];
led1=0;
delay1(40);
led1=1;
P0=seg1[temp[5]];
led2=0;
delay1(40);
led2=1;
P0=seg[temp[4]];
led3=0;
delay1(40);
led3=1;
}
}
}
//********************************************************************************
void StartUART( void )
{ //波特率4800
SCON = 0x50;
TMOD = 0x20;
TH1 = 0xFA;
TL1 = 0xFA;
PCON = 0x00;
TR1 = 1;
}
void R_S_Byte(INT8U R_Byte)
{
SBUF = R_Byte;
while( TI == 0 ); //查询法
TI = 0;
}
void main(void)
{
INT8U i,leng =0;
INT8U RxBuf[8]={0}; // 8字节, 如果需要更长的数据包,请正确设置
CpuInit();
POWER_UP_RESET_CC1100();
halRfWriteRfSettings();
halSpiWriteBurstReg(CCxxx0_PATABLE, PaTabel, 8);//发射功率设置
delay(6000);
StartUART();
while(1)
{
leng =4; // 预计接受8 bytes
if(halRfReceivePacket(RxBuf,&leng)) //判断是否接收到数据
{
temp[0]=RxBuf[3]; //符号位
temp[2]=((RxBuf[2]<<4)|RxBuf[1]); //整数位
temp[1]=RxBuf[0]; //小数位
temp[4]=RxBuf[2]; //十位
temp[5]=RxBuf[1];
for(i=0;i<3;i++)
{
R_S_Byte(temp[2-i]) ;
delay(100);
}
disdignit();
}
}
}
复制代码
(, 下载次数: 45)
上传
点击文件名下载附件
(, 下载次数: 37)
上传
点击文件名下载附件
下载
欢迎光临 圣源电子制作 (http://bbs.syyyd.com/)
Powered by Discuz! X3.4